

Monostable and Astable Questions

Monostable Circuits

Question 1

The correct equation to calculate the time period of a 555 monostable is:

- A. $T = 0.7 \times R \times C$
- B. $T = 0.7 \div (R \times C)$
- C. $T = 1.1 \times R \times C$
- D. $T = 1.1 \div (R \times C)$

Question 2

A 555 monostable uses a $10\text{ k}\Omega$ resistor and a $470\text{ }\mu\text{F}$ capacitor as the timing components. The time period of the monostable is:

- A. 47 seconds
- B. 5.2 seconds
- C. 4.7 seconds
- D. 3.3 seconds

Question 3

A 555 monostable circuit using a $220\text{ }\mu\text{F}$ capacitor to give a time period of 100 ms needs a timing resistor value of:

- A. $450\text{ k}\Omega$
- B. $410\text{ k}\Omega$
- C. 450Ω
- D. 410Ω

Question 4

The correct equation to calculate the time period of a NAND monostable is:

- A. $T = 0.7 \times R \times C$
- B. $T = 0.7 \div (R \times C)$
- C. $T = 1.1 \times R \times C$
- D. $T = 1.1 \div (R \times C)$

Question 5

A NAND gate monostable uses a $120\text{ k}\Omega$ resistor and a 47 nF capacitor as the timing components. The time period of the monostable circuit is:

- A. 2.6ms
- B. 3.9ms
- C. 5.6ms
- D. 6.2ms

Question 6

The input to a monostable circuit is called the:

- A. Trigger
- B. Reset
- C. Threshold
- D. Discharge

Question 7

A 555 astable circuit uses a $1\text{ }\mu\text{F}$ capacitor for the timing capacitor, a $33\text{ k}\Omega$ resistor for R1 and a $22\text{ k}\Omega$ resistor for R2. The time period of the output is:

- A. 0.039 seconds
- B. 0.054 seconds
- C. 0.085 seconds
- D. 0.11 seconds

Question 8

A 555 astable has a time period of 20 ms. The frequency of the astable circuit is:

- A. 14 Hz
- B. 20 Hz
- C. 50 Hz
- D. 100 Hz

Question 9

A 555 astable circuit has a Mark of 10 ms and a Space of 5 ms. The time period is:

- A. 0.5ms
- B. 2ms
- C. 5ms
- D. 15ms

Question 10

For the astable in the previous question, the Mark-Space ratio is:

- A. 1:2
- B. 2:1
- C. 1:3
- D. 3:1

Question 11

A different 555 astable circuit has timing components with values $C = 47 \mu F$, $R1 = 68 k\Omega$ and $R2 = 12 k\Omega$. The Mark-Space ratio of the output signal is:

- A. 17:3
- B. 3:17
- C. 20:3
- D. 3:20

Question 12

For the astable in the previous question, the frequency of the output signal is:

- A. 0.3Hz
- B. 3Hz
- C. 17Hz
- D. 20Hz

Answers

1. C
2. B
3. D
4. A
5. B
6. A
7. B
8. C
9. D
10. B
11. C
12. A

Website

http://www.pfnicholls.com/Electronics_Resources/QuestionIndex.html

© Paul Nicholls

October 2021

Electronics Resources by Paul Nicholls is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).